Given 2x $$-$$ y + 2z = 2, x $$-$$ 2y - z = $$-$$4, x + y + $$\lambda$$z = 4, then the value of $$\lambda$$ such that the given system of equation has no solution is
Let $$A = \left[ {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right]$$ and $$10B = \left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right]$$
If B is the inverse of A, then the value of $$\alpha$$ is
If $$\left[ {\matrix{ 1 & { - \tan \theta } \cr {\tan \theta } & 1 \cr } } \right]{\left[ {\matrix{ 1 & {\tan \theta } \cr { - \tan \theta } & 1 \cr } } \right]^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then
If p $$\ne$$ a, q $$\ne$$ b, r $$\ne$$ c and the system of equations
px + ay + az = 0
bx + qy + bz = 0
cx + cy + rz = 0
has a non-trivial solution, then the value of $$\frac{p}{p-a}+\frac{q}{q-b}+\frac{r}{r-c}$$ is