1
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

If $$a, b, c$$ are non-zero real numbers and if the system of equations $$(a-1) x-y-z=0, -x+(b-1) y-z=0,-x-y+(c-1) z=0$$ has a non-trivial solution, then $$a b+b c+c a$$ equals to

A
$$a b c$$
B
$$a+b+c$$
C
1
D
$$-1$$
2
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

Given 2x $$-$$ y + 2z = 2, x $$-$$ 2y - z = $$-$$4, x + y + $$\lambda$$z = 4, then the value of $$\lambda$$ such that the given system of equation has no solution is

A
$$-$$3
B
1
C
0
D
3
3
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

Let $$A = \left[ {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right]$$ and $$10B = \left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right]$$

If B is the inverse of A, then the value of $$\alpha$$ is

A
4
B
$$-$$4
C
3
D
5
4
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

If $$\left[ {\matrix{ 1 & { - \tan \theta } \cr {\tan \theta } & 1 \cr } } \right]{\left[ {\matrix{ 1 & {\tan \theta } \cr { - \tan \theta } & 1 \cr } } \right]^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then

A
a = 1, b = 1
B
$$a = \sin 2\theta ,b = \cos 2\theta $$
C
$$a = \cos 2\theta ,b = \sin 2\theta $$
D
None of these
BITSAT Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12