1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line passing through the point $(-1,3,-2)$ and perpendicular to each of the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$, is

A
$\frac{x+1}{2}=\frac{y-3}{7}=\frac{z+2}{4}$
B
$\frac{x+1}{-2}=\frac{y-3}{-7}=\frac{z+2}{4}$
C
$\frac{x+1}{2}=\frac{y-3}{7}=\frac{z+2}{-4}$
D
$\frac{x+1}{2}=\frac{y-3}{-7}=\frac{z+2}{4}$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=a \sin x+b \cos x \quad$ (where $\mathrm{a}$ and $\mathrm{b}$ are constants), then $y^2+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2$ is

A
a function of $x$.
B
a function of $x$ and $y$.
C
a function of $y$.
D
a constant.
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If Rolle's theorem holds for the function $\mathrm{f}(x)=x^3+\mathrm{bx}{ }^2+\mathrm{ax}+5$ on $[1,3]$ with $\mathrm{c}=2+\frac{1}{\sqrt{3}}$, then the values of $a$ and $b$ respectively are

A
$-11,6$
B
$-11,-6$
C
$11,6$
D
$11,-6$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Ten bulbs are drawn successively, with replacement, from a lot containing $10 \%$ defective bulbs, then the probability that there is at least one defective bulb, is

A
$1-\left(\frac{1}{10}\right)^{10}$
B
$1-\left(\frac{3}{10}\right)^{10}$
C
$1-\left(\frac{9}{10}\right)^{10}$
D
$1-\left(\frac{7}{10}\right)^{10}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12