$\hat{a}, \hat{b}$, and $\hat{c}$ are three unit vectors such that $\hat{a} \times(\hat{b} \times \hat{c})=\frac{\sqrt{3}}{2}(\hat{b}+\hat{c})$. If $\dot{b}$ is not parallel to $\hat{c}$, then the angle between $\hat{a}$ and $\hat{b}$ is
For a suitable chosen real constant a, let a function $f: \mathbb{R}-\{-\mathrm{a}\} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{a-x}{a+x}$. Further suppose that for any real number $x \neq-\mathrm{a}$ and $\mathrm{f}(x) \neq-\mathrm{a}$, (fof) $(x)=x$. Then $f\left(-\frac{1}{5}\right)$ is equal to
If the statement $p \vee \sim(q \wedge r)$ is false, then the truth values of $p, q$ and $r$ are respectively
If $\left(m_i, \frac{1}{m_i}\right), m_i>0, i=1,2,3,4$ are four distinct points on a circle, then the product $\mathrm{m}_1 \mathrm{~m}_2 \mathrm{~m}_3 \mathrm{~m}_4$ is equal to