1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Considering only the principal values of inverse function, the set

$$A=\left\{x \geq 0 / \tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}\right\}$$

A
is an empty set.
B
is a singleton set.
C
contains more than two elements.
D
contains two elements.
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The slopes of the lines given by $x^2+2 h x y+2 y^2=0$ are in the ratio $1: 2$, then $h$ is

A
$\frac{1}{2}$
B
$\frac{3}{2}$
C
$3$
D
$1$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\left[\mathrm{e}^{4 x}\left(\frac{x-4}{x+3}\right)^{\frac{3}{4}}\right]$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

A
$\frac{\mathrm{d} y}{\mathrm{~d} x}=y\left[4+\frac{21}{4(x-4)(x+3)}\right]$
B
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[4+\frac{21}{4(x-4)(x+3)}\right]$
C
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{y}\left[4+\frac{21}{4(x-4)(x+3)}\right]$
D
$\frac{\mathrm{d} y}{\mathrm{~d} x}=y\left[4+\frac{21}{4(x+4)(x+3)}\right]$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int 3^{3^x} \cdot 3^x d x=$$

A
$\frac{3^x}{(\log 3)^2}+c$, where $c$ is a constant of integration.
B
$\frac{3^{3^x}}{\log 3}+\mathrm{c}$, where c is a constant of integration.
C
$\frac{3^{3^x}}{(\log 3)^2}+c$, where $c$ is a constant of integration.
D
$\frac{3^x}{\log 3}+\mathrm{c}$, where c is a constant of integration.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12