1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{\mathrm{d} x}{3-2 \cos 2 x}=\frac{\tan ^{-1}(\mathrm{f}(x))}{\sqrt{5}}+\mathrm{c}$, (where c is a constant of integration), then $f(\pi / 4)$ has the value

A
$-\sqrt{5}$
B
$\sqrt{5}$
C
$\frac{2}{\sqrt{5}}$
D
$\frac{1}{\sqrt{5}}$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The normal to the curve, $y(x-2)(x-3)=x+6$ at the point, where the curve intersects the Y-axis, passes through the point

A
$\left(-\frac{1}{2},-\frac{1}{2}\right)$
B
$\left(\frac{1}{2}, \frac{1}{2}\right)$
C
$\left(\frac{1}{2},-\frac{1}{3}\right)$
D
$\left(\frac{1}{2}, \frac{1}{3}\right)$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For all real $x$, the vectors $C x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{C} x \hat{\mathrm{k}}$ make an obtuse angle with each other, then the value of C can be in

A
$(0,1)$
B
$\left(-2, \frac{-4}{3}\right)$
C
$\left(\frac{-4}{3}, 0\right)$
D
$\left(0, \frac{4}{3}\right)$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]$, then $A^{-1}$ is

A
$\left[\begin{array}{cc}1 & -\frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]$
B
$\left[\begin{array}{cc}1 & \frac{1}{2} \\ -2 & \frac{3}{2}\end{array}\right]$
C
$\left[\begin{array}{cc}1 & -\frac{1}{2} \\ -2 & \frac{3}{2}\end{array}\right]$
D
$\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12