1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{\mathrm{d} x}{3-2 \cos 2 x}=\frac{\tan ^{-1}(\mathrm{f}(x))}{\sqrt{5}}+\mathrm{c}$, (where c is a constant of integration), then $f(\pi / 4)$ has the value

A
$-\sqrt{5}$
B
$\sqrt{5}$
C
$\frac{2}{\sqrt{5}}$
D
$\frac{1}{\sqrt{5}}$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The normal to the curve, $y(x-2)(x-3)=x+6$ at the point, where the curve intersects the Y-axis, passes through the point

A
$\left(-\frac{1}{2},-\frac{1}{2}\right)$
B
$\left(\frac{1}{2}, \frac{1}{2}\right)$
C
$\left(\frac{1}{2},-\frac{1}{3}\right)$
D
$\left(\frac{1}{2}, \frac{1}{3}\right)$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For all real $x$, the vectors $C x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{C} x \hat{\mathrm{k}}$ make an obtuse angle with each other, then the value of C can be in

A
$(0,1)$
B
$\left(-2, \frac{-4}{3}\right)$
C
$\left(\frac{-4}{3}, 0\right)$
D
$\left(0, \frac{4}{3}\right)$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $A=\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array}\right]$, then $A^{-1}$ is

A
$\left[\begin{array}{cc}1 & -\frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]$
B
$\left[\begin{array}{cc}1 & \frac{1}{2} \\ -2 & \frac{3}{2}\end{array}\right]$
C
$\left[\begin{array}{cc}1 & -\frac{1}{2} \\ -2 & \frac{3}{2}\end{array}\right]$
D
$\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & \frac{3}{2}\end{array}\right]$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12