1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $f$ and $g$ be continuous functions on $[0, a]$ such that $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$, then $\int_0^a f(x) g(x) d x$ is equal to

A
$4 \int_\limits0^a f(x) \mathrm{d} x$
B
$\int_\limits0^2 \mathrm{f}(x) \mathrm{d} x$
C
$2 \int_\limits0^2 f(x) \mathrm{d} x$
D
$-3 \int_\limits0^2 f(x) d x$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The principal solutions, of the equation $\sqrt{3} \sec x+2=0$, are

A
$\frac{2 \pi}{3}, \frac{4 \pi}{3}$
B
$\frac{4 \pi}{3}, \frac{5 \pi}{3}$
C
$\frac{5 \pi}{6}, \frac{7 \pi}{6}$
D
$\frac{7 \pi}{6}, \frac{11 \pi}{6}$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of real solutions of $\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^2+x+1}=\frac{\pi}{2}$ is

A
zero.
B
one.
C
two.
D
infinite.
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=(2 \hat{i}+2 \hat{j}+3 \hat{k}), \vec{b}=(-\hat{i}+2 \hat{j}+\hat{k}) \quad$ and $\bar{c}=(3 \hat{i}+\hat{j})$ such that $(\bar{a}+\lambda \bar{b})$ is perpendicular to $\bar{c}$, then the value of $\lambda$ is

A
$-8$
B
8
C
10
D
$\frac{8}{3}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12