1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{a}>0$ and $\mathrm{z}=\frac{(1+\mathrm{i})^2}{\mathrm{a}-\mathrm{i}}, \mathrm{i}=\sqrt{-1}$, has magnitude $\sqrt{\frac{2}{5}}$ then $\bar{z}$ is equal to

A
$\frac{1}{5}-\frac{3}{5} \mathrm{i}$
B
$-\frac{1}{5}-\frac{3}{5} \mathrm{i}$
C
$-\frac{1}{5}+\frac{3}{5} \mathrm{i}$
D
$-\frac{3}{5}-\frac{1}{5} \mathrm{i}$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A bag contains 4 Red and 6 Black balls. A ball is drawn at random from the bag, its colour is observed and this ball along with 3 additional balls of the same colour are returned to the bag. If now a ball is drawn at random from the bag, then the probability that this drawn ball is red is

A
$\frac{41}{65}$
B
$\frac{24}{65}$
C
$\frac{26}{65}$
D
$\frac{28}{65}$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let K be the set of all real values of $x$, where the function $\mathrm{f}(x)=\sin |x|-|x|+2(x-\pi) \cos |x|$ is not differentiable. Then the set K is

A
$\{0\}$
B
an empty set
C
$\{\pi\}$
D
$\{0, \pi\}$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $f$ and $g$ be continuous functions on $[0, a]$ such that $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$, then $\int_0^a f(x) g(x) d x$ is equal to

A
$4 \int_\limits0^a f(x) \mathrm{d} x$
B
$\int_\limits0^2 \mathrm{f}(x) \mathrm{d} x$
C
$2 \int_\limits0^2 f(x) \mathrm{d} x$
D
$-3 \int_\limits0^2 f(x) d x$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12