The value of $\lim _\limits{x \rightarrow 0} \frac{x}{|x|+x^2}$ is
Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. Let $\overline{\mathrm{c}}$ be a vector such that $|\bar{c}-\bar{a}|=3$ and $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=3$ and the angle between $\overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is $30^{\circ}$, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$ is equal to
The value of $\cos \left(2 \cos ^{-1} x+\sin ^{-1} x\right)$ at $x=\frac{1}{5}$ where $0 \leq \cos ^{-1} x \leq \pi$ and $-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}$, is
Considering only the principal values of inverse function, the set
$$A=\left\{x \geq 0 / \tan ^{-1}(2 x)+\tan ^{-1}(3 x)=\frac{\pi}{4}\right\}$$