1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\left[\mathrm{e}^{4 x}\left(\frac{x-4}{x+3}\right)^{\frac{3}{4}}\right]$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

A
$\frac{\mathrm{d} y}{\mathrm{~d} x}=y\left[4+\frac{21}{4(x-4)(x+3)}\right]$
B
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[4+\frac{21}{4(x-4)(x+3)}\right]$
C
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{y}\left[4+\frac{21}{4(x-4)(x+3)}\right]$
D
$\frac{\mathrm{d} y}{\mathrm{~d} x}=y\left[4+\frac{21}{4(x+4)(x+3)}\right]$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int 3^{3^x} \cdot 3^x d x=$$

A
$\frac{3^x}{(\log 3)^2}+c$, where $c$ is a constant of integration.
B
$\frac{3^{3^x}}{\log 3}+\mathrm{c}$, where c is a constant of integration.
C
$\frac{3^{3^x}}{(\log 3)^2}+c$, where $c$ is a constant of integration.
D
$\frac{3^x}{\log 3}+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{1+\cos \pi x}{\pi(1-x)^2}$, for $x \neq 1$ is continuous at $x=1$, then $\mathrm{f}(1)$ is equal to

A
$\frac{\pi}{2}$
B
$\frac{2}{\pi}$
C
$\frac{\pi^2}{4}$
D
$\frac{4}{\pi^2}$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The length of the longest interval, in which the function $3 \sin x-4 \sin ^3 x$ is increasing, is

A
$\frac{\pi}{3}$
B
$\frac{\pi}{2}$
C
$\frac{3 \pi}{2}$
D
$\pi$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12