1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int\left(\frac{x+2}{x+4}\right)^2 \cdot e^x \mathrm{~d} x=$$

A
$\mathrm{e}^x\left(\frac{x}{x+4}\right)+\mathrm{c}$, where c is a constant of integration.
B
$\mathrm{e}^x\left(\frac{x+2}{x+4}\right)+\mathrm{c}$, where c is a constant of integration.
C
$\mathrm{e}^x\left(\frac{x-2}{x+4}\right)+\mathrm{c}$, where c is a constant of integration.
D
$\mathrm{e}^x\left(\frac{2 x}{x+4}\right)+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, with usual notations, if $\frac{1}{b+c}+\frac{1}{c+a}=\frac{3}{a+b+c}$, then $m \angle C$ is equal to

A
$\frac{\pi}{3}$
B
$\frac{\pi}{2}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{6}$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{a}>0$ and $\mathrm{z}=\frac{(1+\mathrm{i})^2}{\mathrm{a}-\mathrm{i}}, \mathrm{i}=\sqrt{-1}$, has magnitude $\sqrt{\frac{2}{5}}$ then $\bar{z}$ is equal to

A
$\frac{1}{5}-\frac{3}{5} \mathrm{i}$
B
$-\frac{1}{5}-\frac{3}{5} \mathrm{i}$
C
$-\frac{1}{5}+\frac{3}{5} \mathrm{i}$
D
$-\frac{3}{5}-\frac{1}{5} \mathrm{i}$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A bag contains 4 Red and 6 Black balls. A ball is drawn at random from the bag, its colour is observed and this ball along with 3 additional balls of the same colour are returned to the bag. If now a ball is drawn at random from the bag, then the probability that this drawn ball is red is

A
$\frac{41}{65}$
B
$\frac{24}{65}$
C
$\frac{26}{65}$
D
$\frac{28}{65}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12