1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{1+\cos \pi x}{\pi(1-x)^2}$, for $x \neq 1$ is continuous at $x=1$, then $\mathrm{f}(1)$ is equal to

A
$\frac{\pi}{2}$
B
$\frac{2}{\pi}$
C
$\frac{\pi^2}{4}$
D
$\frac{4}{\pi^2}$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The length of the longest interval, in which the function $3 \sin x-4 \sin ^3 x$ is increasing, is

A
$\frac{\pi}{3}$
B
$\frac{\pi}{2}$
C
$\frac{3 \pi}{2}$
D
$\pi$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The scalar $\overline{\mathrm{a}} \cdot[(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \times(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})]$ equals

A
$0$
B
$[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]+[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{a}}]$
C
$[\bar{a} \bar{b} \bar{c}]$
D
$1$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The volume of parallelopiped formed by vectors $\hat{i}+m \hat{j}+\hat{k}, \hat{j}+m \hat{k}$ and $m \hat{i}+\hat{k}$ becomes minimum when $m$ is

A
2
B
3
C
$\sqrt{3}$
D
$\frac{1}{\sqrt{3}}$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12