1
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A plane is parallel to two lines whose direction ratios are $$1,0,-1$$ and $$-1,1,0$$ and it contains the point $$(1,1,1)$$. If it cuts the co-ordinate axes at $$\mathrm{A}, \mathrm{B}, \mathrm{C}$$, then the volume of the tetrahedron $$\mathrm{OABC}$$ (in cubic units) is

A
$$\frac{9}{4}$$
B
$$\frac{9}{2}$$
C
9
D
27
2
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function $$\mathrm{f}(x)=\sin ^4 x+\cos ^4 x$$ is increasing in

A
$$0 < x < \frac{\pi}{8}$$
B
$$\frac{\pi}{4} < x < \frac{\pi}{2}$$
C
$$\frac{3 \pi}{8} < x < \frac{5 \pi}{8}$$
D
$$\frac{5 \pi}{8} < x < \frac{3 \pi}{4}$$
3
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$a > 0$$ and $$z=\frac{(1+i)^2}{a+i},(i=\sqrt{-1})$$ has magnitude $$\frac{2}{\sqrt{5}}$$, then $$\bar{z}$$ is equal to

A
$$-\frac{2}{5}+\frac{4}{5} \mathrm{i}$$
B
$$\frac{2}{5}-\frac{4}{5} \mathrm{i}$$
C
$$-\frac{2}{5}-\frac{4}{5} \mathrm{i}$$
D
$$\frac{2}{5}+\frac{4}{5} \mathrm{i}$$
4
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $$\int \frac{\sin ^2 x \cos ^2 x}{\left(\sin ^5 x+\cos ^3 x \sin ^2 x+\sin ^3 x \cos ^2 x+\cos ^5 x\right)^2} \mathrm{~d} x$$ is equal to

A
$$\frac{1}{3\left(1+\tan ^3 x\right)}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{-1}{3\left(1+\tan ^3 x\right)}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{1+\cot ^3 x}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\frac{-1}{1+\cos ^3 x}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
MHT CET Papers
EXAM MAP