1
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\overline{\mathrm{A}}$$ be a vector parallel to line of intersection of planes $$P_1$$ and $$P_2$$ through origin. $$P_1$$ is parallel to the vectors $$2 \hat{j}+3 \hat{k}$$ and $$4 \hat{j}-3 \hat{k}$$ and $$P_2$$ is parallel to $$\hat{j}-\hat{k}$$ and $$3 \hat{i}+3 \hat{j}$$, then the angle between $$\bar{A}$$ and $$2 \hat{i}+\hat{j}-2 \hat{k}$$ is

A
$$\frac{\pi}{3}$$
B
$$\frac{\pi}{2}$$
C
$$\frac{\pi}{6}$$
D
$$\frac{3 \pi}{4}$$
2
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\operatorname{cosec} x d x}{\cos ^2\left(1+\log \tan \frac{x}{2}\right)}=$$

A
$$\tan \left(1+\log \left(\tan \frac{x}{2}\right)\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is constant of integration
B
$$\tan (1+\log (\tan x))+c$$, where $$\mathrm{c}$$ is constant of integration
C
$$\tan \left(\log \left(\tan \frac{x}{2}\right)\right)+c$$, where c is constant of integration.
D
$$\tan \left(\tan \frac{x}{2}\right)+c$$, where c is constant of integration.
3
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the variance of the numbers $$-1,0,1, \mathrm{k}$$ is 5, where $$\mathrm{k} > 0$$, then $$\mathrm{k}$$ is equal to

A
$$2 \sqrt{\frac{10}{3}}$$
B
$$2 \sqrt{6}$$
C
$$4 \sqrt{\frac{5}{3}}$$
D
$$\sqrt{6}$$
4
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation $$\cos (x+y) \mathrm{d} y=\mathrm{d} x$$ has the general solution given by

A
$$y=\sin (x+y)+c$$, where $$\mathrm{c}$$ is a constant.
B
$$y=\tan (x+y)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant
C
$$y=\tan \left(\frac{x+y}{2}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant
D
$$y=\frac{1}{2} \tan (x+y)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant
MHT CET Papers
EXAM MAP