1
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $$\int \frac{\sin ^2 x \cos ^2 x}{\left(\sin ^5 x+\cos ^3 x \sin ^2 x+\sin ^3 x \cos ^2 x+\cos ^5 x\right)^2} \mathrm{~d} x$$ is equal to

A
$$\frac{1}{3\left(1+\tan ^3 x\right)}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{-1}{3\left(1+\tan ^3 x\right)}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{1+\cot ^3 x}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\frac{-1}{1+\cos ^3 x}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
2
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane through $$(-1,1,2)$$ whose normal makes equal acute angles with co-ordinate axes is

A
$$x+y+z-3=0$$
B
$$x+y+z-2=0$$
C
$$x+y-z-2=0$$
D
$$x-y+z-3=0$$
3
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{T}_{\mathrm{n}}$$ denotes the number of triangles which can be formed using the vertices of regular polygon of $$\mathrm{n}$$ sides and $$T_{n+1}-T_n=21$$, then $$\mathrm{n}=$$

A
5
B
7
C
6
D
4
4
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Then the probability distribution of number of jacks is

A
$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\frac{144}{169}$$ $$\frac{24}{169}$$ $$\frac{1}{169}$$
B
$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\frac{1}{169}$$ $$\frac{144}{169}$$ $$\frac{24}{169}$$
C
$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\frac{24}{169}$$ $$\frac{1}{169}$$ $$\frac{144}{169}$$
D
$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\frac{144}{169}$$ $$\frac{1}{169}$$ $$\frac{24}{169}$$
MHT CET Papers
EXAM MAP