1
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $$\int \frac{\sin ^2 x \cos ^2 x}{\left(\sin ^5 x+\cos ^3 x \sin ^2 x+\sin ^3 x \cos ^2 x+\cos ^5 x\right)^2} \mathrm{~d} x$$ is equal to

A
$$\frac{1}{3\left(1+\tan ^3 x\right)}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{-1}{3\left(1+\tan ^3 x\right)}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{1+\cot ^3 x}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\frac{-1}{1+\cos ^3 x}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
2
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane through $$(-1,1,2)$$ whose normal makes equal acute angles with co-ordinate axes is

A
$$x+y+z-3=0$$
B
$$x+y+z-2=0$$
C
$$x+y-z-2=0$$
D
$$x-y+z-3=0$$
3
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{T}_{\mathrm{n}}$$ denotes the number of triangles which can be formed using the vertices of regular polygon of $$\mathrm{n}$$ sides and $$T_{n+1}-T_n=21$$, then $$\mathrm{n}=$$

A
5
B
7
C
6
D
4
4
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Then the probability distribution of number of jacks is

A
$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\frac{144}{169}$$ $$\frac{24}{169}$$ $$\frac{1}{169}$$
B
$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\frac{1}{169}$$ $$\frac{144}{169}$$ $$\frac{24}{169}$$
C
$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\frac{24}{169}$$ $$\frac{1}{169}$$ $$\frac{144}{169}$$
D
$$\mathrm{X}=x$$ 0 1 2
$$\mathrm{P(X}=x)$$ $$\frac{144}{169}$$ $$\frac{1}{169}$$ $$\frac{24}{169}$$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12