Let $$\gamma_1$$ be the ratio of molar specific heat at constant pressure and molar specific heat at constant volume of a monoatomic gas and $$\gamma_2$$ be the similar ratio of diatomic gas. Considering the diatomic gas molecule as a rigid rotator, the ratio $$\frac{\gamma_2}{\gamma_1}$$ is
A railway track is banked for a speed ',$$v$$' by elevating outer rail by a height '$$h$$' above the inner rail. The distance between two rails is 'd' then the radius of curvature of track is ( $$\mathrm{g}=$$ gravitational acceleration)
In the given capacitive network the resultant capacitance between point $$\mathrm{A}$$ and $$\mathrm{B}$$ is
In Young's double slit experiment the intensities at two points, for the path difference $$\frac{\lambda}{4}$$ and $$\frac{\lambda}{3}$$ ($$\lambda=$$ wavelength of light used) are $$I_1$$ and $$I_2$$ respectively. If $$\mathrm{I}_0$$ denotes the intensity produced by each one of the individual slits then $$\frac{\mathrm{I}_1+\mathrm{I}_2}{\mathrm{I}_0}$$ is equal to $$\left(\cos 60^{\circ}=0.5, \cos 45^{\circ}=\frac{1}{\sqrt{2}}\right)$$