A gas at normal temperature is suddenly compressed to one-fourth of its original volume. If $$\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=\gamma=1.5$$, then the increase in its temperature is
When light of wavelength $$\lambda$$ is incident on a photosensitive surface the stopping potential is '$$\mathrm{V}$$'. When light of wavelength $$3 \lambda$$ is incident on same surface the stopping potential is $$\frac{\mathrm{V}}{6}$$. Then the threshold wavelength for the surface is
One of the necessary condition for total internal reflection to take place is
( $$\mathrm{i}=$$ angle of incidence, $$\mathrm{i}_{\mathrm{c}}=$$ critical angle)
In the given circuit, if $$\frac{\mathrm{dI}}{\mathrm{dt}}=-1 \mathrm{~A} / \mathrm{s}$$ then the value of $$\left(V_A-V_B\right)$$ at this instance will be