Two adjacent sides of a parallelogram $$\mathrm{ABCD}$$ are given by $$\overline{A B}=2 \hat{i}+10 \hat{j}+11 \hat{k}$$ and $$\overline{\mathrm{AD}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$$. The side $$\mathrm{AD}$$ is rotated by an acute angle $$\alpha$$ in the plane of parallelogram so that $$\mathrm{AD}$$ becomes $$\mathrm{AD}^{\prime}$$. If $$\mathrm{AD}^{\prime}$$ makes a right angle with side AB, then the cosine of the angle $$\alpha$$ is given by
The values of $$a$$ and $$b$$, so that the function
$$f(x)=\left\{\begin{array}{l} x+a \sqrt{2} \sin x, 0 \leq x \leq \frac{\pi}{4} \\ 2 x \cot x+b, \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2 x-b \sin x, \frac{\pi}{2} < x \leq \pi \end{array}\right.$$
is continuous for $$0 \leq x \leq \pi$$, are respectively given by
For a feasible region OCDBO given below, the maximum value of the objective function $$z=3 x+4 y$$ is
If $$\mathrm{g}(x)=1+\sqrt{x}$$ and $$\mathrm{f}(\mathrm{g}(x))=3+2 \sqrt{x}+x$$ then $$\mathrm{f}(\mathrm{f}(x))$$ is