1
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The values of $$a$$ and $$b$$, so that the function

$$f(x)=\left\{\begin{array}{l} x+a \sqrt{2} \sin x, 0 \leq x \leq \frac{\pi}{4} \\ 2 x \cot x+b, \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2 x-b \sin x, \frac{\pi}{2} < x \leq \pi \end{array}\right.$$

is continuous for $$0 \leq x \leq \pi$$, are respectively given by

A
$$-\frac{\pi}{12}, \frac{\pi}{6}$$
B
$$-\frac{\pi}{6},-\frac{\pi}{12}$$
C
$$\frac{\pi}{6}, \frac{\pi}{12}$$
D
$$\frac{\pi}{6},-\frac{\pi}{12}$$
2
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For a feasible region OCDBO given below, the maximum value of the objective function $$z=3 x+4 y$$ is

MHT CET 2023 12th May Morning Shift Mathematics - Linear Programming Question 49 English

A
70
B
100
C
110
D
130
3
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{g}(x)=1+\sqrt{x}$$ and $$\mathrm{f}(\mathrm{g}(x))=3+2 \sqrt{x}+x$$ then $$\mathrm{f}(\mathrm{f}(x))$$ is

A
$$x^2+4 x+6$$
B
$$x^4+x^2+6$$
C
$$x^2+x+6$$
D
$$x^4+4 x^2+6$$
4
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $$\sin \left(60^{\circ} 0^{\prime} 10^{\prime \prime}\right)$$ is (given that $$\sqrt{3}=1.732,1^{\circ}=0.0175^{\circ}$$ )

A
0.08660243
B
0.0008660243
C
0.8660243
D
0.008660243
MHT CET Papers
EXAM MAP