1
GATE ME 2025
Numerical
+1
-0

$$ \text { The values of a function } f \text { obtained for different values of } x \text { are shown in the table below. } $$

$$ \begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 0.25 & 0.5 & 0.75 & 1.0 \\ \hline f(x) & 0.9 & 2.0 & 1.5 & 1.8 & 0.4 \\ \hline \end{array} $$

$$ \text { Using Simpson's one-third rule, } $$

$$ \int_0^1 f(x) d x \approx $$__________[Rounded off to 2 decimal places]

Your input ____
2
GATE ME 2025
MCQ (Single Correct Answer)
+2
-0.67

In the closed interval $[0,3]$, the minimum value of the function $f$ given below is $f(x)=2 x^3-9 x^2+12 x$

A
0
B
4
C
5
D
9
3
GATE ME 2025
Numerical
+2
-0

If $C$ is the unit circle in the complex plane with its center at the origin, then the value of $n$ in the equation given below is _______ (rounded off to 1 decimal place).

$$ \oint_c \frac{z^3}{\left(z^2+4\right)\left(z^2-4\right)} d z=2 \pi i n $$

Your input ____
4
GATE ME 2025
Numerical
+2
-0

The directional derivative of the function $f$ given below at the point $(1,0)$ in the direction of $\frac{1}{2}(\hat{i}+\sqrt{3} \hat{j})$ is _______ (Rounded off to 1 decimal place).

$$ f(x, y)=x^2+x y^2 $$

Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12