1
GATE ME 1994
Fill in the Blanks
+1
-0
If $$f(t)$$ is a finite and continuous Function for $$t \ge 0$$ the laplace transformation is given by
$$F = \int\limits_0^\infty {{e^{ - st}}\,\,f\left( t \right)dt,} $$ then for $$f(t)=cos$$ $$h$$ $$mt,$$ the laplace transformation is ___________.
2
GATE ME 1994
Subjective
+1
-0
Find out the eigen value of the matrix $$A = \left[ {\matrix{ 1 & 0 & 0 \cr 2 & 3 & 1 \cr 0 & 2 & 4 \cr } } \right]$$ for any one of the eigen values, find out the corresponding eigen vector?
3
GATE ME 1994
Fill in the Blanks
+1
-0
The value of $$\int\limits_0^\infty {{e^{ - {y^3}}}.{y^{1/2}}} $$ dy is _________.
4
GATE ME 1994
True or False
+1
-0
If $$H(x, y)$$ is homogeneous function of degree $$n$$ then $$x{{\partial H} \over {\partial x}} + y{{\partial H} \over {\partial y}} = nH$$
A
TRUE
B
FALSE
EXAM MAP