Let $$f:A \to B$$ be an onto (or surjective) function, where A and B are nonempty sets. Define an equivalence relation $$\sim$$ on the set A as
$${a_1} \sim {a_2}$$ if $$f({a_1}) = f({a_2})$$,
where $${a_1},{a_2} \in A$$. Let $$\varepsilon = \{ [x]:x \in A\} $$ be the set of all the equivalence classes under $$\sim$$. Define a new mapping $$F:\varepsilon \to B$$ as
$$F([x]) = f(x)$$, for all the equivalence classes $$[x]$$ in $$\varepsilon $$.
Which of the following statements is/are TRUE?
Let X be a set and 2$$^X$$ denote the powerset of X. Define a binary operation $$\Delta$$ on 2$$^X$$ as follows:
$$A\Delta B=(A-B)\cup(B-A)$$.
Let $$H=(2^X,\Delta)$$. Which of the following statements about H is/are correct?
Consider a random experiment where two fair coins are tossed. Let A be the event that denotes HEAD on both the throws, B be the event that denotes HEAD on the first throw, and C be the event that denotes HEAD on the second throw. Which of the following statements is/are TRUE?
Let G be a simple, finite, undirected graph with vertex set {$$v_1,...,v_n$$}. Let $$\Delta(G)$$ denote the maximum degree of G and let N = {1, 2, ...} denote the set of all possible colors. Color the vertices of G using the following greedy strategy:
for $$i=1,....,n$$
color($$v_i)$$ $$\leftarrow$$ min{$$j\in N$$ : no neighbour of $$v_i$$ is colored $$j$$}
Which of the following statements is/are TRUE?