Geetha has a conjecture about integers, which is of the form
$$\forall x\left( {P(x) \Rightarrow \exists yQ(x,y)} \right)$$,
where P is a statement about integers, and Q is a statement about pairs of integers. Which of the following (one or more) option(s) would imply Geetha's conjecture?
Let $$f(x) = {x^3} + 15{x^2} - 33x - 36$$ be a real-valued function. Which of the following statements is/are TRUE?
Let A be the adjacency matrix of the graph with vertices {1, 2, 3, 4, 5}.
Let $$\lambda_1,\lambda_2,\lambda_3,\lambda_4$$, and $$\lambda_5$$ be the five eigenvalues of A. Note that these eigenvalues need not be distinct.
The value of $$\lambda_1+\lambda_2+\lambda_3+\lambda_4+\lambda_5=$$ ______________
The value of the definite integral
$$\int\limits_{ - 3}^3 {\int\limits_{ - 2}^2 {\int\limits_{ - 1}^1 {(4{x^2}y - {z^3})dz\,dy\,dx} } } $$
is ___________. (Rounded off to the nearest integer)