Let G be any connected, weighted, undirected graph.
I. G has a unique minimum spanning tree, if no two edges of G have the same weight.
II. G has a unique minimum spanning tree, if, for every cut of G, there is a unique minimum-weight edge crossing the cut.
Which of the above two statements is/are TRUE?
Consider the following matrix :
$$ R=\left[\begin{array}{cccc} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{array}\right] $$
The absolute value of the product of Eigen values of $R$ is ___________.
#include < unistd.h >
int main ()
{
int i ;
for (i=0; i<10; i++)
if (i%2 == 0) fork ( ) ;
return 0 ;
}
The total number of child processes created is _____.
Assume that in a certain computer, the virtual addresses are 64 bits long and the physical addresses are 48 bits long. The memory is word addressable. The page size is 8 kB and the word size is 4 bytes. The Translation Look-aside Buffer (TLB) in the address translation path has 128 valid entries. At most how many distinct virtual addresses can be translated without any TLB miss?