1
GATE CSE 2011
MCQ (Single Correct Answer)
+2
-0.6
An undirected graph G(V, E) contains n ( n > 2 ) nodes named v1 , v2 ,….vn. Two nodes vi , vj are connected if and only if 0 < |i – j| <= 2. Each edge (vi, vj ) is assigned a weight i + j. A sample graph with n = 4 is shown below. GATE CSE 2011 Algorithms - Greedy Method Question 18 English What will be the cost of the minimum spanning tree (MST) of such a graph with n nodes?
A
$${1 \over {12}}(11{n^2} - 5n)$$
B
$${n^2}{\rm{ - }}\,n + 1$$
C
6n – 11
D
2n + 1
2
GATE CSE 2011
MCQ (Single Correct Answer)
+2
-0.6
An undirected graph G(V, E) contains n ( n > 2 ) nodes named v1 , v2 ,….vn. Two nodes vi , vj are connected if and only if 0 < |i – j| <= 2. Each edge (vi, vj ) is assigned a weight i + j. A sample graph with n = 4 is shown below. GATE CSE 2011 Algorithms - Greedy Method Question 17 English The length of the path from v5 to v6 in the MST of previous question with n = 10 is
A
11
B
25
C
31
D
41
3
GATE CSE 2011
MCQ (Single Correct Answer)
+1
-0.3
An algorithm to find the length of the longest monotonically increasing sequence of numbers in an array A[0:n−1] is given below.

Let Li, denote the length of the longest monotonically increasing sequence starting at index i in the array. Initialize Ln−1=1.

For all i such that $$0 \leq i \leq n-2$$

$$L_i = \begin{cases} 1+ L_{i+1} & \quad\text{if A[i] < A[i+1]} \\ 1 & \quad\text{Otherwise}\end{cases}$$

Finally, the length of the longest monotonically increasing sequence is max(L0, L1,…,Ln−1)
Which of the following statements is TRUE?
A
The algorithm uses dynamic programming paradigm
B
The algorithm has a linear complexity and uses branch and bound paradigm
C
The algorithm has a non-linear polynomial complexity and uses branch and bound paradigm
D
The algorithm uses divide and conquer paradigm
4
GATE CSE 2011
MCQ (Single Correct Answer)
+2
-0.6
Four matrices M1, M2, M3 and M4 of dimensions p $$\times$$ q, q $$\times$$ r, r $$\times$$ s and s $$\times$$ t respectively can be multiplied is several ways with different number of total scalar multiplications. For example, when multiplied as ((M1 $$\times$$ M2) $$\times$$ (M3 $$\times$$ M4)), the total number of multiplications is pqr + rst + prt. When multiplied as (((M1 $$\times$$ M2) $$\times$$ M3) $$\times$$ M4), the total number of scalar multiplications is pqr + prs + pst.

If p = 10, q = 100, r = 20, s = 5 and t = 80, then the number of scalar multiplications needed is:
A
248000
B
44000
C
19000
D
25000
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12