1
GATE CSE 2011
+2
-0.6
The following is comment written for $$a$$ $$c$$ function. This function computes the roots of quadratic equation. $$a{x^2} + bx + c = 0$$ the function stores two real roots in $${}^ * root1\,\,\& \,\,{}^ * root2\,\,\,\&$$ returns the status of validity of roots. In handles four different kinds of cases
$$i)$$ When coefficient $$a$$ is zero or irrespective of discriminate
$$ii)$$ When discriminate is positive.
$$iii)$$ When discriminate is zero
$$iv)$$ When discriminate is negative

Only in cases $$(ii)$$ & $$(iii)$$ the stored roots are valid Otherwise $$0$$ is stored in the roots the function returns $$0$$ when the roots are valid & - $$1$$ otherwise. The function also ensures root $$1$$ $$> =$$ root $$2.$$

int get QuadRoots(float a, float b, float c, float $${}^ * root1$$, float $${}^ * root2$$);

A software test engineer is assigned the job of doing block box testing. He comes up with the following test cases, many of which are redundant

Which one of the following options provide the set of non-redundant tests using equivalence class partitioning approach from input perspective for black box testing?

A
$${T_1},\,{T_2},\,{T_3},\,{T_6}$$
B
$${T_1},\,{T_3},\,{T_4},\,{T_5}$$
C
$${T_2},\,{T_4},\,{T_5},\,{T_6}$$
D
$${T_2},\,{T_3},\,{T_4},\,{T_5}$$
2
GATE CSE 2011
+2
-0.6
Definition of the language $$L$$ with alphabet $$\left\{ a \right\}$$ is given as following. $$L = \left\{ {{a^{nk}}} \right.\left| {k > 0,\,n} \right.$$ is a positive integer constant$$\left. \, \right\}$$

What is the minimum number of states needed in a $$DFA$$ to recognize $$L$$?

A
$$k+1$$
B
$$n+1$$
C
$${2^{n + 1}}$$
D
$${2^{k + 1}}$$
3
GATE CSE 2011
+1
-0.3
The lexical analysis for a modern computer language such as java needs the power of which one of the following machine model in a necessary and sufficient sense?
A
Finite state automata
B
Deterministic pushdown automata
C
Non -deterministic pushdown automata
D
Turing machine
4
GATE CSE 2011
+2
-0.6
Consider the languages $${L_1}$$, $${L_2}$$ and $${L_3}$$ are given below. \eqalign{ & {L_1} = \left\{ {{0^p}{1^q}\left| {p,q \in N} \right.} \right\} \cr & {L_2} = \left\{ {{0^p}{1^q}\left| {p,q \in N} \right.\,\,and\,\,p = q} \right\}\,\,and \cr & {L_3} = \left\{ {{0^p}{1^q}{0^r}\left| {p,q,r\, \in N\,\,\,and\,\,\,p = q = r} \right.} \right\}. \cr}\$

Which of the following statements is not TRUE?

A
Pushdown automata $$(PDA)$$ can be used to recognize $${L_1}$$ and $${L_2}$$
B
$${L_1}$$ is a regular language
C
All the three languages are context free
D
Turing machines can be used to recognize all the languages
GATE CSE Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Medical
NEET