1
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
The recurrence relation $$\,\,\,\,\,$$ $$T\left( 1 \right) = 2$$
$$T\left( n \right) = 3T\left( {{n \over 4}} \right) + n$$ has the solution $$T(n)$$ equal to
A
$$O(n)$$
B
$$O$$ (log n)
C
$$O\left( {{n^{3/4}}} \right)$$
D
None of the above
2
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
The matrices$$\left[ {\matrix{ {\cos \,\theta } & { - \sin \,\theta } \cr {\sin \,\,\theta } & {\cos \,\,\theta } \cr } } \right]\,\,and$$
$$\left[ {\matrix{ a & 0 \cr 0 & b \cr } } \right]\,$$ commute under multiplication
A
if a = b or $$\theta = n\,\pi $$, n an integer
B
always
C
never
D
if a cos $$\theta \,\, \ne \,\,b\,\,\sin \,\theta $$
3
GATE CSE 1996
MCQ (Single Correct Answer)
+1
-0.3
The formula used to compute an approximation for the second derivative of a function $$f$$ at a point $${x_0}$$ is
A
$${{f\left( {{x_0} + h} \right) + f\left( {{x_0} - h} \right)} \over 2}$$
B
$${{f\left( {{x_0} + h} \right) - f\left( {{x_0} - h} \right)} \over 2h}$$
C
$${{f\left( {{x_0} + h} \right) + 2f\left( {{x_0}} \right) + f\left( {{x_0} - h} \right)} \over {{h^2}}}$$
D
$${{f\left( {{x_0} + h} \right) - 2f\left( {{x_0}} \right) + f\left( {{x_0} - h} \right)} \over {{h^2}}}$$
4
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following is false? Read $$ \wedge $$ as AND, $$ \vee $$ as OR, $$ \sim $$ as NOT, $$ \to $$ as one way implication and $$ \leftrightarrow $$ two way implication.
A
$$\left( {\left( {x \to y} \right) \wedge x} \right) \to y$$
B
$$\left( {\left( { \sim x \to y} \right) \wedge \left( { \sim x \to \sim y} \right)} \right) \to x$$
C
$$\left( {x \to \left( {x \vee y} \right)} \right)$$
D
$$\left( {\left( {x \vee y} \right) \leftrightarrow \left( { \sim x \to \sim y} \right)} \right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12