1
GATE CSE 1996
Subjective
+1
-0
Let $$A = \left[ {\matrix{ {{a_{11}}} & {{a_{12}}} \cr {{a_{21}}} & {{a_{22}}} \cr } } \right]\,\,$$ and $$B = \left[ {\matrix{ {{b_{11}}} & {{b_{12}}} \cr {{b_{21}}} & {{b_{22}}} \cr } } \right]\,\,$$ be
two matrices such that $$AB=1.$$
Let $$C = A\left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]$$ and $$CD=1.$$
Express the elements of $$D$$ in terms of the elements of $$B.$$
2
GATE CSE 1996
MCQ (Single Correct Answer)
+1
-0.3
Two dice are thrown simultaneously. The probability that at least one of them will have 6 facing up is
A
$${1 \over {36}}$$
B
$${1 \over {3}}$$
C
$${25 \over {36}}$$
D
$${11\over {36}}$$
3
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
The probability that the top and bottom cards of a randomly shuffled deck are both access is
A
$${4 \over {52}}\, \times \,{4 \over {52}}\,$$
B
$${4 \over {52}}\, \times \,{3 \over {52}}\,$$
C
$${4 \over {52}}\, \times \,{3 \over {51}}\,$$
D
$${4 \over {52}}\, \times \,{4 \over {51}}\,$$
4
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
Let R be a non-emply relation on a collection of sets defined by $${A^R}\,B $$ if and only if $$A\, \cap \,B\, = \,\phi $$. Then, (pick the true statement)
A
R is reflexive and transitive
B
R is symmetric and not transitive
C
R is an equivalence relation
D
R is not reflexive and not symmetric
EXAM MAP