1
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following is false?
A
The set of all bijective functions on a finite set forms a group under function composition.
B
The set {1, 2, ..., p - 1} forms a group under multiplication mod p where p is a prime number.
C
The set of all strings over a finite alphabet $$\sum $$ forms a group under concatenation.
D
A subset $$s\, \ne \,\phi $$ of G is a subgroup of the group if and only if for any pair of elements $$a,\,\,b\,\, \in \,\,s,\,\,a\,\,*\,\,{b^{ - 1}}\,\, \in \,s$$.
2
GATE CSE 1996
MCQ (Single Correct Answer)
+2
-0.6
Let R denote the set of real numbers. Let f: $$R\,x\,R \to \,R\,x\,R\,$$ be a bijective function defined by f (x, y ) = (x + y, x - y). The inverse function of f is given by
A
$${f^{ - 1}}\,(x,\,y)\, = \,\left( {{1 \over {x\, + \,y}},\,{1 \over {x\, - \,y}}} \right)$$
B
$${f^{ - 1}}\,(x,\,y)\, = \,\,(x\, - \,y,\,\,x\, + y)$$
C
$${f^{ - 1}}\,(x,\,y)\, = \,\left( {{{x\, + \,y} \over 2},\,{{x\, - \,y} \over 2}} \right)$$
D
$${f^{ - 1}}\,(x,\,y)\, = \,(2\,(x\, - \,y),\,2\,(x\, + y))$$
3
GATE CSE 1996
MCQ (Single Correct Answer)
+1
-0.3
Let $$A$$ and $$B$$ be sets and let $${A^c}$$ and $${B^c}$$ denote the complements of the sets $$A$$ and $$B$$. The set $$\left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right)$$ is equal to
A
$${A \cup B}$$
B
$${{A^c} \cup {B^c}}$$
C
$${A \cap B}$$
D
$${{A^c} \cap {B^c}}$$
4
GATE CSE 1996
MCQ (Single Correct Answer)
+1
-0.3
Let $$X$$ $$X = \left\{ {2,3,6,12,24} \right\}$$. Let $$ \le $$ the partial order defined by $$x \le y$$ if $$x$$ divides $$y$$. The number of edges in the Hasse diagram of $$\left( {X, \le } \right)$$ is
A
$$3$$
B
$$4$$
C
$$9$$
D
None of the above
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12