1
GATE CSE 1996
+2
-0.6
Which one of the following is false?
A
The set of all bijective functions on a finite set forms a group under function composition.
B
The set {1, 2, ..., p - 1} forms a group under multiplication mod p where p is a prime number.
C
The set of all strings over a finite alphabet $$\sum$$ forms a group under concatenation.
D
A subset $$s\, \ne \,\phi$$ of G is a subgroup of the group if and only if for any pair of elements $$a,\,\,b\,\, \in \,\,s,\,\,a\,\,*\,\,{b^{ - 1}}\,\, \in \,s$$.
2
GATE CSE 1996
+2
-0.6
Let R denote the set of real numbers. Let f: $$R\,x\,R \to \,R\,x\,R\,$$ be a bijective function defined by f (x, y ) = (x + y, x - y). The inverse function of f is given by
A
$${f^{ - 1}}\,(x,\,y)\, = \,\left( {{1 \over {x\, + \,y}},\,{1 \over {x\, - \,y}}} \right)$$
B
$${f^{ - 1}}\,(x,\,y)\, = \,\,(x\, - \,y,\,\,x\, + y)$$
C
$${f^{ - 1}}\,(x,\,y)\, = \,\left( {{{x\, + \,y} \over 2},\,{{x\, - \,y} \over 2}} \right)$$
D
$${f^{ - 1}}\,(x,\,y)\, = \,(2\,(x\, - \,y),\,2\,(x\, + y))$$
3
GATE CSE 1996
+1
-0.3
Let $$A$$ and $$B$$ be sets and let $${A^c}$$ and $${B^c}$$ denote the complements of the sets $$A$$ and $$B$$. The set $$\left( {A - B} \right) \cup \left( {B - A} \right) \cup \left( {A \cap B} \right)$$ is equal to
A
$${A \cup B}$$
B
$${{A^c} \cup {B^c}}$$
C
$${A \cap B}$$
D
$${{A^c} \cap {B^c}}$$
4
GATE CSE 1996
+1
-0.3
Let $$X$$ $$X = \left\{ {2,3,6,12,24} \right\}$$. Let $$\le$$ the partial order defined by $$x \le y$$ if $$x$$ divides $$y$$. The number of edges in the Hasse diagram of $$\left( {X, \le } \right)$$ is
A
$$3$$
B
$$4$$
C
$$9$$
D
None of the above
GATE CSE Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Medical
NEET