1
GATE CE 1998
Subjective
+1
-0
Obtain the eigen values and eigen vectors of $$A = \left[ {\matrix{ 8 & -4 \cr 2 & { 2 } \cr } } \right].$$
2
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
The real symmetric matrix $$C$$ corresponding to the quadratic form $$Q = 4{x_1}{x_2} - 5{x_2}{x_2}$$ is
A
$$\left[ {\matrix{ 1 & 2 \cr 2 & { - 5} \cr } } \right]$$
B
$$\left[ {\matrix{ 2 & 0 \cr 0 & { - 5} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 1 \cr 1 & { - 2} \cr } } \right]$$
D
$$\left[ {\matrix{ 0 & 2 \cr 2 & { - 5} \cr } } \right]$$
3
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
If $$A$$ is a real square matrix then $$A{A^T}$$ is
A
un symmetric
B
always symmetric
C
skew - symmetric
D
some times symmetric
4
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
In matrix algebra $$AS=AT$$ ($$A,S,T,$$ are matrices of appropriate order) implies $$S=T$$ only if
A
$$A$$ is symmetric
B
$$A$$ is singular
C
$$A$$ is non singular
D
$$A$$ is skew - symmetric
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12