1
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
The Laplace Transform of a unit step function $${u_a}\left( t \right),$$ defined as
$$\matrix{ {{u_a}\left( t \right) = 0} & {for\,\,\,t < a\,} \cr { = 1} & {for\,\,\,t > a,} \cr } $$ is
A
$${e^{ - as}}/s$$
B
$$s{e^{ - as}}$$
C
$$s - u\left( 0 \right)$$
D
$$s{e^{ - as}} - 1$$
2
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
The continuous function $$f(x, y)$$ is said to have saddle point at $$(a, b)$$ if
A
$${f_x}\left( {a,\,b} \right) = {f_y}\left( {a,\,b} \right) = 0$$
$$f_{xy}^2 - {f_{xx}}{f_{yy}} < 0$$ at $$(a, b)$$
B
$${f_x}\left( {a,\,b} \right) = 0,{f_y}\left( {a,\,b} \right) = 0$$
$$f_{xy}^2 - {f_{xx}}{f_{yy}} > 0$$ at $$(a, b)$$
C
$${f_x}\left( {a,\,b} \right) = 0,{f_y}\left( {a,\,b} \right) = 0,$$
$${f_{xx}}$$ and $${f_{yy}} < 0$$ at $$(a, b)$$
D
$${f_x}\left( {a,\,b} \right) = 0,{f_y}\left( {a,\,b} \right) = 0$$
$$f_{xy}^2 - {f_{xx}}{f_{yy}} = 0\,\,$$ at $$(a, b)$$
3
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
The Taylor's series expansion of sin $$x$$ is ______.
A
$$1 - {{{x^2}} \over {2!}} + {{{x^4}} \over {4!}} - ......$$
B
$$1 + {{{x^2}} \over {4!}} + {{{x^4}} \over {4!}} + ......$$
C
$$x + {{{x^3}} \over {3!}} + {{{x^5}} \over {5!}} + ......$$
D
$$x - {{{x^3}} \over {3!}} + {{{x^5}} \over {5!}} - ......$$
4
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
A discontinuous real function can be expressed as
A
Taylor's series and Fourier's series
B
Taylor's series and not by Fourier's series
C
Neither Taylor's series nor Fourier's series
D
not by Taylor's series, but by Fourier's series
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12