1
GATE CE 1998
Subjective
+2
-0
Solve $${{{d^4}y} \over {d{x^4}}} - y = 15\,\cos \,\,2x$$
2
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
$${\left( {s + 1} \right)^{ - 2}}$$ is laplace transform of
A
$${t^2}$$
B
$${t^3}$$
C
$${e^-2t}$$
D
$$t{e^{ - t}}$$
3
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
The Laplace Transform of a unit step function $${u_a}\left( t \right),$$ defined as
$$\matrix{ {{u_a}\left( t \right) = 0} & {for\,\,\,t < a\,} \cr { = 1} & {for\,\,\,t > a,} \cr } $$ is
A
$${e^{ - as}}/s$$
B
$$s{e^{ - as}}$$
C
$$s - u\left( 0 \right)$$
D
$$s{e^{ - as}} - 1$$
4
GATE CE 1998
MCQ (Single Correct Answer)
+1
-0.3
The continuous function $$f(x, y)$$ is said to have saddle point at $$(a, b)$$ if
A
$${f_x}\left( {a,\,b} \right) = {f_y}\left( {a,\,b} \right) = 0$$
$$f_{xy}^2 - {f_{xx}}{f_{yy}} < 0$$ at $$(a, b)$$
B
$${f_x}\left( {a,\,b} \right) = 0,{f_y}\left( {a,\,b} \right) = 0$$
$$f_{xy}^2 - {f_{xx}}{f_{yy}} > 0$$ at $$(a, b)$$
C
$${f_x}\left( {a,\,b} \right) = 0,{f_y}\left( {a,\,b} \right) = 0,$$
$${f_{xx}}$$ and $${f_{yy}} < 0$$ at $$(a, b)$$
D
$${f_x}\left( {a,\,b} \right) = 0,{f_y}\left( {a,\,b} \right) = 0$$
$$f_{xy}^2 - {f_{xx}}{f_{yy}} = 0\,\,$$ at $$(a, b)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12