1
GATE CE 1998
+1
-0.3
The continuous function $$f(x, y)$$ is said to have saddle point at $$(a, b)$$ if
A
$${f_x}\left( {a,\,b} \right) = {f_y}\left( {a,\,b} \right) = 0$$
$$f_{xy}^2 - {f_{xx}}{f_{yy}} < 0$$ at $$(a, b)$$
B
$${f_x}\left( {a,\,b} \right) = 0,{f_y}\left( {a,\,b} \right) = 0$$
$$f_{xy}^2 - {f_{xx}}{f_{yy}} > 0$$ at $$(a, b)$$
C
$${f_x}\left( {a,\,b} \right) = 0,{f_y}\left( {a,\,b} \right) = 0,$$
$${f_{xx}}$$ and $${f_{yy}} < 0$$ at $$(a, b)$$
D
$${f_x}\left( {a,\,b} \right) = 0,{f_y}\left( {a,\,b} \right) = 0$$
$$f_{xy}^2 - {f_{xx}}{f_{yy}} = 0\,\,$$ at $$(a, b)$$
2
GATE CE 1998
Subjective
+2
-0
Solve $${{{d^4}y} \over {d{x^4}}} - y = 15\,\cos \,\,2x$$
3
GATE CE 1998
+1
-0.3
The Laplace Transform of a unit step function $${u_a}\left( t \right),$$ defined as
$$\matrix{ {{u_a}\left( t \right) = 0} & {for\,\,\,t < a\,} \cr { = 1} & {for\,\,\,t > a,} \cr }$$ is
A
$${e^{ - as}}/s$$
B
$$s{e^{ - as}}$$
C
$$s - u\left( 0 \right)$$
D
$$s{e^{ - as}} - 1$$
4
GATE CE 1998
+1
-0.3
$${\left( {s + 1} \right)^{ - 2}}$$ is laplace transform of
A
$${t^2}$$
B
$${t^3}$$
C
$${e^-2t}$$
D
$$t{e^{ - t}}$$
GATE CE Papers
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Joint Entrance Examination