1
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

The value of integral $$\int \frac{d x}{(1+x)^{3 / 4}(x-2)^{5 / 4}}$$ is is equal to

A
$$-\frac{3}{4}\left(\frac{x+1}{x-2}\right)^{1 / 4}+C$$
B
$$-\frac{3}{4}\left(\frac{x-2}{x+1}\right)^{1 / 4}+C$$
C
$$-\frac{4}{3}\left(\frac{x+1}{x-2}\right)^{1 / 4}+C$$
D
$$-\frac{4}{3}\left(\frac{x-2}{x+1}\right)^{1 / 4}+C$$
2
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

Let $$f(x)=\int \frac{\sqrt{x}}{(1+x)^2} d x$$, where $$x \geq 0$$. Then, $$f(3)-f(1)$$ is equal to

A
$$\frac{\pi}{12}+\frac{1}{2}-\frac{\sqrt{3}}{4}$$
B
$$-\frac{\pi}{6}+\frac{1}{2}+\frac{\sqrt{3}}{4}$$
C
$$-\frac{\pi}{12}+\frac{1}{2}+\frac{\sqrt{3}}{4}$$
D
$$\frac{\pi}{6}+\frac{1}{2}-\frac{\sqrt{3}}{4}$$
3
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

The value of $$\int {{1 \over {{{[{{(x - 1)}^3}{{(x + 2)}^5}]}^{{1 \over 4}}}}}dx} $$, is

A
$${4 \over 3}{\left( {{{x + 1} \over {x - 2}}} \right)^{{1 \over 4}}} + C$$
B
$${3 \over 4}{\left( {{{x - 1} \over {x + 2}}} \right)^{{1 \over 4}}} + C$$
C
$${4 \over 3}{\left( {{{x - 1} \over {x + 2}}} \right)^{{1 \over 4}}} + C$$
D
$${1 \over 3}{\left( {{{2x - 1} \over {4x - 3}}} \right)^{{1 \over 4}}} + C$$
4
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

Let $$f(x) = \int {{{{x^2}dx} \over {(1 + {x^2})(1 + \sqrt {1 + {x^2}} )}}} $$ and $$f(0) = 0$$, then the value of $$f(1)$$ be

A
$$\log (1 + \sqrt 2 )$$
B
$$\log (1 + \sqrt 2 ) - {\pi \over 4}$$
C
$$\log (1 + \sqrt 2 ) + {\pi \over 2}$$
D
None of these
BITSAT Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12