1
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

Let $$f(x) = \int {{{{x^2}dx} \over {(1 + {x^2})(1 + \sqrt {1 + {x^2}} )}}} $$ and $$f(0) = 0$$, then the value of $$f(1)$$ be

A
$$\log (1 + \sqrt 2 )$$
B
$$\log (1 + \sqrt 2 ) - {\pi \over 4}$$
C
$$\log (1 + \sqrt 2 ) + {\pi \over 2}$$
D
None of these
2
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

$$\int {{1 \over {1 - 2\sin x}}dx} $$ is equal to

A
$${1 \over {2\sqrt 3 }}\log \left| {{{\tan {x \over 2} - 2 - \sqrt 3 } \over {\tan {x \over 2} - 2 + \sqrt 3 }}} \right| + c$$
B
$${{\sqrt 3 } \over 2}\log \left| {{{\tan {x \over 2} - 2 - \sqrt 3 } \over {\tan {x \over 2} - 2 + \sqrt 3 }}} \right| + c$$
C
$${1 \over {\sqrt 3 }}\log \left| {{{\tan {x \over 2} - 2 - \sqrt 3 } \over {\tan {x \over 2} - 2 + \sqrt 3 }}} \right| + c$$
D
None of the above
BITSAT Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN