1
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

If p, q, r are in AP and are positive, the roots of the quadratic equation px2 + qx + r = 0 are all real for

A
$$\left| {{r \over p} - 7} \right| \ge 4\sqrt 3 $$
B
$$\left| {{p \over r} - 7} \right| < 4\sqrt 3 $$
C
All p and r
D
No p and r
2
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

If one GM, g and two AM's p and q are inserted between two numbers a and b, then (2p $$-$$ q) (p $$-$$ 2q) is equal to

A
g2
B
$$-$$g2
C
2g
D
3g2
3
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

Given that x, y, and z are three consecutive positive integers and x $$-$$ z + 2 = 0, what is the value of $${1 \over 2}{\log _e}x + {1 \over 2}{\log _e}z + {1 \over {2xz + 1}} + {1 \over 3}{\left( {{1 \over {2xz + 1}}} \right)^3} + ...$$?

A
loge x
B
loge y
C
loge z
D
None of these
4
BITSAT 2020
MCQ (Single Correct Answer)
+3
-1

The value of the sum $$\sum\limits_{k = 1}^\infty {\sum\limits_{n = 1}^\infty {{k \over {{2^{n + k}}}}} } $$ is

A
5
B
4
C
3
D
2
BITSAT Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12