1
BITSAT 2023
MCQ (Single Correct Answer)
+3
-1

If $$n$$ is the number of solutions of the equation $$2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$$ and $$S$$ is the sum of all these solutions, then the ordered pair $$(n, S)$$ is

A
$$(3,13 \pi / 9)$$
B
$$(2,2 \pi / 3)$$
C
$$(2,8 \pi / 9)$$
D
$$(3,5 \pi / 3)$$
2
BITSAT 2022
MCQ (Single Correct Answer)
+3
-1

The sum of all the solution of the equation $$\cos \theta \cos \left( {{\pi \over 3} + \theta } \right)\cos \left( {{\pi \over 3} - \theta } \right) = {1 \over 4},\theta \in [0,6\pi ]$$

A
15$$\pi$$
B
30$$\pi$$
C
$${{100\pi } \over 3}$$
D
None of these
3
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

If $${\cos ^3}x\,.\,\sin 2x = \sum\limits_{m = 1}^n {{a_m}\sin mx} $$ is identity in x, then

A
$${a_3} = {3 \over 8},{a_2} = 0$$
B
$$n = 6,{a_1} = {1 \over 2}$$
C
$$n = 5,{a_1} = {3 \over 4}$$
D
$$\sum {{a_m} = {1 \over 4}} $$
4
BITSAT 2021
MCQ (Single Correct Answer)
+3
-1

Total number of solutions of $$\left| {\cot x} \right| = \cot x + {1 \over {\sin x}},x \in [0,3\pi ]$$ is equal to

A
1
B
2
C
3
D
0
BITSAT Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12