1
AIPMT 2003
MCQ (Single Correct Answer)
+4
-1
Formation of solution from two components can be considered as
(i) Pure solvent $$ \to $$ separated solvent molecules, $$\Delta $$H1
(ii) Pure solute $$ \to $$ separated solute molecules, $$\Delta $$H2
(iii) Separated solvent and solute molecules $$ \to $$ solution, $$\Delta $$H3
Solution so formed will be ideal if
A
$$\Delta $$Hsoln = $$\Delta $$H1 + $$\Delta $$H2 + $$\Delta $$H3
B
$$\Delta $$Hsoln = $$\Delta $$H1 + $$\Delta $$H2 $$-$$ $$\Delta $$H3
C
$$\Delta $$Hsoln = $$\Delta $$H1 $$-$$ $$\Delta $$H2 $$-$$ $$\Delta $$H3
D
$$\Delta $$Hsoln = $$\Delta $$H3 $$-$$ $$\Delta $$H1 $$-$$ $$\Delta $$H2
2
AIPMT 2003
MCQ (Single Correct Answer)
+4
-1
What is the entropy change (in J K$$-$$1 mol$$-$$1) when one mole of ice is converted into water at 0oC? (The enthalpy change for the conversion of ice to liquid water is 6.0 kJ mol$$-$$1 at 0oC).
A
20.13
B
2.013
C
2.198
D
21.98
3
AIPMT 2003
MCQ (Single Correct Answer)
+4
-1
For which one of the following equations is $$\Delta $$Horeact equal to $$\Delta $$Hof for the product ?
A
Xe(g) + 2F2(g) $$ \to $$ XeF4(g)
B
2CO(g) + O2(g) $$ \to $$ 2CO2(g)
C
N2(g) + O3(g) $$ \to $$ N2O3(g)
D
CH4(g) + 2Cl2(g) $$ \to $$ CH2Cl2(l) + 2HCl(g)
4
AIPMT 2003
MCQ (Single Correct Answer)
+4
-1
The molar heat capacity of water at constant pressure, C, is 75 J K$$-$$1 mol$$-$$1. When 1.0 kJ of heat is supplied to 100 g of water which is free to expand, the increase in temperature of water is
A
1.2 K
B
2.4 K
C
4.8 K
D
6.6 K
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12