1
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int_\limits0^{\frac{1}{2}} \frac{x^2}{\left(1-x^2\right)^{\frac{3}{2}}} \mathrm{~d} x=\frac{\mathrm{k}}{6}$$, then the value of $$\mathrm{k}$$ is

A
$$2 \sqrt{3}-\pi$$
B
$$2 \sqrt{3}+\pi$$
C
$$3 \sqrt{2}+\pi$$
D
$$3 \sqrt{2}-\pi$$
2
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

General solution of the differential equation $$\cos x(1+\cos y) \mathrm{d} x-\sin y(1+\sin x) \mathrm{d} y=0$$ is

A
$$(1+\cos x)(1+\sin y)=c$$
B
$$1+\sin x+\cos y=c$$
C
$$(1+\sin x)(1+\cos y)=c$$
D
$$1+\sin x \cdot \cos y=c$$
3
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the line $$a x+b y+c=0$$ is a normal to the curve $$x y=1$$, then

A
$$a > 0, b > 0$$
B
$$a > 0, b < 0$$
C
$$a < 0 , b < 0$$
D
$$\mathrm{a}=0, \mathrm{~b}=0$$
4
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}, \bar{b}, \bar{c}$$ be three non-zero vectors, such that no two of them are collinear and $$(\bar{a} \times \bar{b}) \times \bar{c}=\frac{1}{3}|\bar{b}||\bar{c}| \bar{a}$$. If $$\theta$$ is the angle between the vectors $$\bar{b}$$ and $$\bar{c}$$, then the value of $$\sin \theta$$ is

A
$$\frac{2 \sqrt{2}}{3}$$
B
$$\frac{-\sqrt{2}}{3}$$
C
$$\frac{\sqrt{2}}{3}$$
D
$$\sqrt{\frac{2}{3}}$$
MHT CET Papers
EXAM MAP