1
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For $$x>1$$, if $$(2 x)^{2 y}=4 \mathrm{e}^{2 x-2 y}$$, then $$(1+\log 2 x)^2 \frac{\mathrm{d} y}{\mathrm{~d} x}$$ is equal to

A
$$\frac{x \log 2 x+\log 2}{x}$$
B
$$\frac{x \log 2 x-\log 2}{x}$$
C
$$x \log 2 x$$
D
$$\log 2 x$$
2
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The vectors are $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|$$ and $$|\bar{c}-\bar{a}|=2 \sqrt{2}$$, angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{4}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is

A
3
B
$$\frac{3}{\sqrt{2}}$$
C
$$3 \sqrt{2}$$
D
1
3
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{7-6 x-x^2} d x=$$

A
$$\frac{1}{4} \log \left(\frac{7+x}{1-x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{1}{8} \log \left(\frac{7+x}{1-x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{16} \log \left(\frac{7+x}{1-x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\frac{1}{32} \log \left(\frac{7+x}{1-x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
4
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{d x}{\sin x+\cos x}=$$

A
$$\sqrt{2} \log \tan \left(x+\frac{\pi}{4}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{1}{\sqrt{2}} \log \tan \left(\frac{x}{2}+\frac{\pi}{8}\right)+c$$, where c is a constant of integration.
C
$$\frac{1}{\sqrt{2}} \log \left(\frac{\tan \frac{x}{2}-\sqrt{2}+1}{\tan \frac{x}{2}+\sqrt{2}+1}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$-\frac{1}{\sqrt{2}} \log \left(\frac{\tan \frac{x}{2}-(\sqrt{2}+1)}{\tan \frac{x}{2}+\sqrt{2}-1}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
MHT CET Papers
EXAM MAP