1
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}=\hat{i}+2 \hat{j}+\hat{k}, \bar{b}=\hat{i}-\hat{j}+\hat{k}, \bar{c}=\hat{i}+\hat{j}-\hat{k}$$, then a vector in the plane of $$\bar{a}$$ and $$\bar{b}$$, whose projection on $$\overline{\mathrm{c}}$$ is $$\frac{1}{\sqrt{3}}$$, is

A
$$\hat{i}+\hat{j}-2 \hat{k}$$
B
$$3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}}$$
C
$$4 \hat{i}-\hat{j}+4 \hat{k}$$
D
$$2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$$
2
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions of $$\tan x+\sec x=2 \cos x$$ in $$[0,2 \pi]$$ are

A
6
B
4
C
3
D
2
3
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int_\limits0^{\frac{1}{2}} \frac{x^2}{\left(1-x^2\right)^{\frac{3}{2}}} \mathrm{~d} x=\frac{\mathrm{k}}{6}$$, then the value of $$\mathrm{k}$$ is

A
$$2 \sqrt{3}-\pi$$
B
$$2 \sqrt{3}+\pi$$
C
$$3 \sqrt{2}+\pi$$
D
$$3 \sqrt{2}-\pi$$
4
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

General solution of the differential equation $$\cos x(1+\cos y) \mathrm{d} x-\sin y(1+\sin x) \mathrm{d} y=0$$ is

A
$$(1+\cos x)(1+\sin y)=c$$
B
$$1+\sin x+\cos y=c$$
C
$$(1+\sin x)(1+\cos y)=c$$
D
$$1+\sin x \cdot \cos y=c$$
MHT CET Papers
EXAM MAP