1
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The vectors are $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|$$ and $$|\bar{c}-\bar{a}|=2 \sqrt{2}$$, angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{4}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is

A
3
B
$$\frac{3}{\sqrt{2}}$$
C
$$3 \sqrt{2}$$
D
1
2
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1}{7-6 x-x^2} d x=$$

A
$$\frac{1}{4} \log \left(\frac{7+x}{1-x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{1}{8} \log \left(\frac{7+x}{1-x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$\frac{1}{16} \log \left(\frac{7+x}{1-x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$\frac{1}{32} \log \left(\frac{7+x}{1-x}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
3
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{d x}{\sin x+\cos x}=$$

A
$$\sqrt{2} \log \tan \left(x+\frac{\pi}{4}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{1}{\sqrt{2}} \log \tan \left(\frac{x}{2}+\frac{\pi}{8}\right)+c$$, where c is a constant of integration.
C
$$\frac{1}{\sqrt{2}} \log \left(\frac{\tan \frac{x}{2}-\sqrt{2}+1}{\tan \frac{x}{2}+\sqrt{2}+1}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$-\frac{1}{\sqrt{2}} \log \left(\frac{\tan \frac{x}{2}-(\sqrt{2}+1)}{\tan \frac{x}{2}+\sqrt{2}-1}\right)+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
4
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A ladder of length $$17 \mathrm{~m}$$ rests with one end against a vertical wall and the other on the level ground. If the lower end slips away at the rate of $$1 \mathrm{~m} / \mathrm{sec}$$., then when it is $$8 \mathrm{~m}$$ away from the wall, its upper end is coming down at the rate of

A
$$\frac{5}{8} \mathrm{~m} / \mathrm{sec}$$.
B
$$\frac{8}{15} \mathrm{~m} / \mathrm{sec}$$.
C
$$\frac{-8}{15} \mathrm{~m} / \mathrm{sec}$$.
D
$$\frac{15}{8} \mathrm{~m} / \mathrm{sec}$$.
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12