1
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\mathrm{P}$$ be a plane passing through the points $$(2,1,0),(4,1,1)$$ and $$(5,0,1)$$ and $$R$$ be the point $$(2,1,6)$$. Then image of $$R$$ in the plane $$P$$ is

A
$$(6,5,2)$$
B
$$(4,3,2)$$
C
$$(6,5,-2)$$
D
$$(3,4,-2)$$
2
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The co-ordinates of the point, where the line through $$A(3,4,1)$$ and $$B(5,1,6)$$ crosses the $$\mathrm{XZ}$$-plane, are

A
$$\left(\frac{11}{3}, 0, \frac{21}{3}\right)$$
B
$$\left(\frac{17}{3}, 0, \frac{23}{3}\right)$$
C
$$\left(\frac{-11}{3}, 0, \frac{21}{3}\right)$$
D
$$\left(\frac{17}{3}, 0, \frac{-23}{3}\right)$$
3
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of possible solutions of $$\sin \theta+\sin 4 \theta+\sin 7 \theta=0, \theta \in(0, \pi)$$ are

A
3
B
4
C
6
D
8
4
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{I}=\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$$, then $$\mathrm{I}$$ is

A
$$\left(\frac{x^4+1}{x}\right)^{\frac{1}{4}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
B
$$\frac{\left(x^4-1\right)^{\frac{1}{4}}}{x}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
C
$$-\frac{\left(x^4+1\right)^{\frac{1}{4}}}{x}+c$$, where $$\mathrm{c}$$ is a constant of integration.
D
$$-\left(\frac{x^4+1}{x}\right)^{\frac{1}{4}}+\mathrm{c}$$, where $$\mathrm{c}$$ is a constant of integration.
MHT CET Papers
EXAM MAP