Scalar projection of the line segment joining the points $$\mathrm{A}(-2,0,3), \mathrm{B}(1,4,2)$$ on the line whose direction ratios are $$6,-2,3$$ is
For a binomial variate $$\mathrm{X}$$ with $$\mathrm{n}=6$$ if $$P(X=4)=\frac{135}{2^{12}}$$, then its variance is
If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}$$ are such that $$(\bar{a}+\lambda \bar{b})$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is
The number of integral values of $$\mathrm{p}$$ in the domain $$[-5,5]$$, such that the equation $$2 x^2+4 x y-p y^2+4 x+q y+1=0$$ represents pair of lines, are