1
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A square plate is contracting at the uniform rate $$4 \mathrm{~cm}^2 / \mathrm{sec}$$, then the rate at which the perimeter is decreasing, when side of the square is $$20 \mathrm{~cm}$$, is

A
$$\frac{1}{5} \mathrm{~cm} / \mathrm{sec}$$.
B
$$4 \mathrm{~cm} / \mathrm{sec}$$.
C
$$2 \mathrm{~cm} / \mathrm{sec}$$.
D
$$\frac{2}{5} \mathrm{~cm} / \mathrm{sec}$$.
2
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function $$\mathrm{f}(x)$$ is continuous in $$0 \leq x \leq \pi$$, then the value of $$2 a+3 b$$ is where

$$f(x)= \begin{cases}x+a \sqrt{2} \sin x & \text { if } 0 \leq x < \frac{\pi}{4} \\ 2 x \cot x+b & \text { if } \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ \operatorname{acos} 2 x-b \sin x & \text { if } \frac{\pi}{2} < x \leq \pi\end{cases}$$

A
$$\frac{\pi}{12}$$
B
$$\frac{\pi}{6}$$
C
$$\frac{\pi}{4}$$
D
$$\frac{\pi}{10}$$
3
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For $$x>1$$, if $$(2 x)^{2 y}=4 \mathrm{e}^{2 x-2 y}$$, then $$(1+\log 2 x)^2 \frac{\mathrm{d} y}{\mathrm{~d} x}$$ is equal to

A
$$\frac{x \log 2 x+\log 2}{x}$$
B
$$\frac{x \log 2 x-\log 2}{x}$$
C
$$x \log 2 x$$
D
$$\log 2 x$$
4
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The vectors are $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|$$ and $$|\bar{c}-\bar{a}|=2 \sqrt{2}$$, angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{4}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is

A
3
B
$$\frac{3}{\sqrt{2}}$$
C
$$3 \sqrt{2}$$
D
1
MHT CET Papers
EXAM MAP