A Carnot engine with efficiency $$50 \%$$ takes heat from a source at $$600 \mathrm{~K}$$. To increase the efficiency to $$70 \%$$, keeping the temperature of the sink same, the new temperature of the source will be
The amplitude of a particle executing S.H.M. is $$3 \mathrm{~cm}$$. The displacement at which its kinetic energy will be $$25 \%$$ more than the potential energy is
A piece of metal at $$850 \mathrm{~K}$$ is dropped in to $$1 \mathrm{~kg}$$ water at $$300 \mathrm{~K}$$. If the equilibrium temperature of water is $$350 \mathrm{~K}$$ then the heat capacity of the metal, expressed in $$\mathrm{JK}^{-1}$$ is $$(1 \mathrm{~cal}=4.2 \mathrm{~J})$$
Heat energy is incident on the surface at the rate of X J/min . If '$$a$$' and '$$r$$' represent coefficient of absorption and reflection respectively then the heat energy transmitted by the surface in '$$t$$' minutes is