A piece of metal at $$850 \mathrm{~K}$$ is dropped in to $$1 \mathrm{~kg}$$ water at $$300 \mathrm{~K}$$. If the equilibrium temperature of water is $$350 \mathrm{~K}$$ then the heat capacity of the metal, expressed in $$\mathrm{JK}^{-1}$$ is $$(1 \mathrm{~cal}=4.2 \mathrm{~J})$$
Heat energy is incident on the surface at the rate of X J/min . If '$$a$$' and '$$r$$' represent coefficient of absorption and reflection respectively then the heat energy transmitted by the surface in '$$t$$' minutes is
Identify the mismatch out of the following.
Two sources of light $$0.6 \mathrm{~mm}$$ apart and screen is placed at a distance of $$1.2 \mathrm{~m}$$ from them. A light of wavelength $$6000\,\mathop A\limits^o$$ used. Then the phase difference between the two light waves interfering on the screen at a point at a distance $$3 \mathrm{~mm}$$ from central bright band is