1
GATE EE 2016 Set 2
Numerical
+2
-0
Let $$y(x)$$ be the solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 4y = 0\,\,$$ with initial conditions $$y(0)=0$$ and $$\,\,{\left. {{{dy} \over {dx}}} \right|_{x = 0}} = 1.\,\,$$ Then the value of $$y(1)$$ is __________.
Your input ____
2
GATE EE 2016 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Consider the function $$f\left( z \right) = z + {z^ * }$$ where $$z$$ is a complex variable and $${z^ * }$$ denotes its complex conjugate. Which one of the following is TRUE?
A
$$f(z)$$ is both continuous and analytic
B
$$f(z)$$ is continuous but not analytic
C
$$f(z)$$ is not continuous but is analytic
D
$$f(z)$$ is neither continuous nor analytic
3
GATE EE 2016 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The solution of the differential equation, for
$$t > 0,\,\,y''\left( t \right) + 2y'\left( t \right) + y\left( t \right) = 0$$ with initial conditions $$y\left( 0 \right) = 0$$ and $$y'\left( 0 \right) = 1,$$ is $$\left[ {u\left( t \right)} \right.$$ denotes the unit step function$$\left. \, \right]$$,
A
$$t{e^{ - t}}\,u\left( t \right)$$
B
$$\left( {{e^{ - t}} - t{e^{ - t}}} \right)u\left( t \right)$$
C
$$\left( { - {e^{ - t}} + t{e^{ - t}}} \right)u\left( t \right)$$
D
$${e^{ - t}}u\left( t \right)$$
4
GATE EE 2016 Set 2
Numerical
+2
-0
A full-bridge converter supplying an RLE load is shown in figure. The firing angle of the bridge converter is 120º. The supply voltage $$${v_m}\left( t \right) = 200\pi \sin \left( {100\pi t} \right)\,V,$$$ $$$R = 20 Ω, E = 800 V$$$The inductor L is large enough to make the output current IL a smooth dc current. Switches are lossless. The real power fed back to the source, in kW, is __________.
Your input ____
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12