1
GATE CSE 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
The value of $$\mathop {\lim }\limits_{x \to \alpha } {\left( {1 + {x^2}} \right)^{{e^{ - x}}}}\,\,$$ is
A
$$0$$
B
$${{1 \over 2}}$$
C
$$1$$
D
$$\infty $$
2
GATE CSE 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Choose the most appropriate equation for the function drawn as a thick line, in the plot below. GATE CSE 2015 Set 3 Discrete Mathematics - Calculus Question 12 English
A
$$x = y - \left| y \right|$$
B
$$x = - \left( {y - \left| y \right|} \right)$$
C
$$x = y + \left| y \right|$$
D
$$x = - \left( {y + \left| y \right|} \right)$$
3
GATE CSE 2015 Set 3
Numerical
+2
-0
Suppose $${X_i}$$ for $$i=1,2,3$$ are independent and identically distributed random variables whose probability mass functions are $$\,\,\Pr \left[ {{X_i} = 0} \right] = \Pr \left[ {{X_i} = 1} \right] = 1/2\,\,$$ for $$i=1,2,3.$$ Define another random variable $$\,\,Y = {X_1}{X_2} \oplus {X_3},\,\,$$ where $$ \oplus $$ denotes $$XOR.$$ Then $$\Pr \left[ {Y = 0\left| {{X_3} = 0} \right.} \right]$$ =________.
Your input ____
4
GATE CSE 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
In the given matrix $$\left[ {\matrix{ 1 & { - 1} & 2 \cr 0 & 1 & 0 \cr 1 & 2 & 1 \cr } } \right],$$ one of the eigenvalues is $$1.$$ The eigen vectors corresponding to the eigen value $$1$$ are
A
$$\left\{ {\alpha \left( {4,2,1} \right)\left| {\alpha \ne 0,\alpha \in \left. R \right\}} \right.} \right.$$
B
$$\left\{ {\alpha \left( { - 4,2,1} \right)\left| {\alpha \ne 0,\alpha \in \left. R \right\}} \right.} \right.$$
C
$$\left\{ {\alpha \left( {\sqrt 2 ,0,1} \right)\left| {\alpha \ne 0,\alpha \in \left. R \right\}} \right.} \right.$$
D
$$\left\{ {\alpha \left( { - \sqrt 2 ,0,1} \right)\left| {\alpha \ne 0,\alpha \in \left. R \right\}} \right.} \right.$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12