1
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
The following equation needs to be numerically solved using the Newton $$-$$ Raphson method $${x^3} + 4x - 9 = 0.\,\,$$ The iterative equation for this purpose is ($$k$$ indicates the iteration level)
A
$${X_{k + 1}} = {{2X_k^3 + 9} \over {3X_k^2 + 4}}$$
B
$${X_{k + 1}} = {{3X_k^3 + 9} \over {2X_k^2 + 9}}$$
C
$${X_{k + 1}} = {X_k} - 3_k^2 + 4$$
D
$${X_{k + 1}} = {{4X_k^2 + 3} \over {9X_k^2 + 2}}$$
2
GATE CE 2007
MCQ (Single Correct Answer)
+1
-0.3
A body originally at $${60^ \circ }$$ cools down to $$40$$ in $$15$$ minutes when kept in air at a temperature of $${25^ \circ }$$c. What will be the temperature of the body at the and of $$30$$ minutes?
A
$${35.2^ \circ }C$$
B
$${31.5^ \circ }C$$
C
$${28.7^ \circ }C$$
D
$${15^ \circ }C$$
3
GATE CE 2007
MCQ (Single Correct Answer)
+2
-0.6
The inverse of $$2 \times 2$$ matrix $$\left[ {\matrix{ 1 & 2 \cr 5 & 7 \cr } } \right]$$ is
A
$${1 \over 3}\left[ {\matrix{ { - 7} & 2 \cr 5 & { - 1} \cr } } \right]$$
B
$${1 \over 3}\left[ {\matrix{ { 7} & 2 \cr 5 & { 1} \cr } } \right]$$
C
$${1 \over 3}\left[ {\matrix{ { 7} &- 2 \cr - 5 & { 1} \cr } } \right]$$
D
$${1 \over 3}\left[ {\matrix{ { - 7} & - 2 \cr - 5 & { - 1} \cr } } \right]$$
4
GATE CE 2007
MCQ (Single Correct Answer)
+2
-0.6
The minimum and maximum eigen values of matrix $$\left[ {\matrix{ 1 & 1 & 3 \cr 1 & 5 & 1 \cr 3 & 1 & 1 \cr } } \right]$$ are $$-2$$ and $$6$$ respectively. What is the other eigen value?
A
$$5$$
B
$$3$$
C
$$1$$
D
$$-1$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12